Primality proof for n = 127341149315694473480617920915957430442427972486810722042617:

Take b = 2.

b^(n-1) mod n = 1.

300984643119527704331 is prime.
b^((n-1)/300984643119527704331)-1 mod n = 25814348006203781854349098236532579698301218697188232732268, which is a unit, inverse 31747980412401195738034089027168806176927355995093891811556.

29799794382272025079 is prime.
b^((n-1)/29799794382272025079)-1 mod n = 21668746920541451333003953878071103500902110273003251812415, which is a unit, inverse 40006273532933932715778758579299614046382323945711604429797.

(29799794382272025079 * 300984643119527704331) divides n-1.

(29799794382272025079 * 300984643119527704331)^2 > n.

n is prime by Pocklington's theorem.