Primality proof for n = 18895059184283836713882776167547354480336145147521570807563207379026619142420663903487643611:

Take b = 2.

b^(n-1) mod n = 1.

8118493917152534667909188789691403 is prime.
b^((n-1)/8118493917152534667909188789691403)-1 mod n = 5890375678678625228805743178373369137306852775923621680686929095793143567390997349081482251, which is a unit, inverse 7053463882840838248564049310190082487924912954143654742909108340704335599267648705066049803.

59180993314580506221962671096753 is prime.
b^((n-1)/59180993314580506221962671096753)-1 mod n = 13248616945087878941466497165349459792996369475884506487477018600907789870987926893346190094, which is a unit, inverse 16845568217948155236676762768198784138986692212578837378916190860260131688122253315977360076.

(59180993314580506221962671096753 * 8118493917152534667909188789691403) divides n-1.

(59180993314580506221962671096753 * 8118493917152534667909188789691403)^2 > n.

n is prime by Pocklington's theorem.