Primality proof for n = 1003679:
Take b = 2.
b^(n-1) mod n = 1.
38603 is prime. b^((n-1)/38603)-1 mod n = 866049, which is a unit, inverse 795760.
(38603) divides n-1.
(38603)^2 > n.
n is prime by Pocklington's theorem.