Primality proof for n = 1010536301839123457339:
Take b = 2.
b^(n-1) mod n = 1.
1541424468855533 is prime.
b^((n-1)/1541424468855533)-1 mod n = 108801635363563338286, which is a unit, inverse 554024719735725645752.
(1541424468855533) divides n-1.
(1541424468855533)^2 > n.
n is prime by Pocklington's theorem.