Primality proof for n = 1013176677300131846900870239606035638738100997248092069256697437031:
Take b = 2.
b^(n-1) mod n = 1.
1489008455352563922568011402972792902916827 is prime.
b^((n-1)/1489008455352563922568011402972792902916827)-1 mod n = 142849972019710074576689311012699457958243166240191106886042533842, which is a unit, inverse 901746840963221812131650432876600973182086392907855680084220353113.
(1489008455352563922568011402972792902916827) divides n-1.
(1489008455352563922568011402972792902916827)^2 > n.
n is prime by Pocklington's theorem.