Primality proof for n = 1019532643:
Take b = 2.
b^(n-1) mod n = 1.
5859383 is prime. b^((n-1)/5859383)-1 mod n = 686335907, which is a unit, inverse 19760312.
(5859383) divides n-1.
(5859383)^2 > n.
n is prime by Pocklington's theorem.