Primality proof for n = 102330720522739:
Take b = 2.
b^(n-1) mod n = 1.
245161069 is prime.
b^((n-1)/245161069)-1 mod n = 76708486521724, which is a unit, inverse 12005238975439.
(245161069) divides n-1.
(245161069)^2 > n.
n is prime by Pocklington's theorem.