Primality proof for n = 10266294221277769350489312192694310037089:
Take b = 2.
b^(n-1) mod n = 1.
575535619138411676722555414061 is prime.
b^((n-1)/575535619138411676722555414061)-1 mod n = 3378174688450394651726926669823758067295, which is a unit, inverse 6555027672674159342442265130011993508096.
(575535619138411676722555414061) divides n-1.
(575535619138411676722555414061)^2 > n.
n is prime by Pocklington's theorem.