Primality proof for n = 104033754239631823712255190956345641806807791724720405509948501077933969978245219141810136352471050222510526161:
Take b = 2.
b^(n-1) mod n = 1.
112704357986686512751543694400357156875971984515762587440143302448053844671 is prime.
b^((n-1)/112704357986686512751543694400357156875971984515762587440143302448053844671)-1 mod n = 99410124940580425724637397322046627847977531332565172174402382412253917802845550595686132921524081062617401303, which is a unit, inverse 56852053669591385229765755493769031285906205985987354905695922370851807244653545371531460272323859844136983786.
(112704357986686512751543694400357156875971984515762587440143302448053844671) divides n-1.
(112704357986686512751543694400357156875971984515762587440143302448053844671)^2 > n.
n is prime by Pocklington's theorem.