Primality proof for n = 104548497879097345351185737255380572327823:
Take b = 2.
b^(n-1) mod n = 1.
10485409823782909 is prime.
b^((n-1)/10485409823782909)-1 mod n = 80475807684641758147314707231415396357243, which is a unit, inverse 45286739171763102501185935409847940891847.
8343868346871877 is prime.
b^((n-1)/8343868346871877)-1 mod n = 10713748655705978717770085477223184341558, which is a unit, inverse 65159556577374916799700283901489470303331.
(8343868346871877 * 10485409823782909) divides n-1.
(8343868346871877 * 10485409823782909)^2 > n.
n is prime by Pocklington's theorem.