Primality proof for n = 1059392654943455286185473617842338478315215895509773412096307:
Take b = 2.
b^(n-1) mod n = 1.
17942392077136950785977011829 is prime.
b^((n-1)/17942392077136950785977011829)-1 mod n = 504440434508575415233793454227095341708697323304977226437162, which is a unit, inverse 998138853698994773956202982878560095896349290477683143077531.
55942463741690639 is prime.
b^((n-1)/55942463741690639)-1 mod n = 151566837501940505309902319186408907084893662716081650174584, which is a unit, inverse 785820324513487496559927009345629538961522571552404769932193.
(55942463741690639 * 17942392077136950785977011829) divides n-1.
(55942463741690639 * 17942392077136950785977011829)^2 > n.
n is prime by Pocklington's theorem.