Primality proof for n = 105957871:
Take b = 2.
b^(n-1) mod n = 1.
881 is prime.
b^((n-1)/881)-1 mod n = 104514594, which is a unit, inverse 105424586.
211 is prime.
b^((n-1)/211)-1 mod n = 5432007, which is a unit, inverse 51324448.
(211 * 881) divides n-1.
(211 * 881)^2 > n.
n is prime by Pocklington's theorem.