Primality proof for n = 107338874501590423:
Take b = 2.
b^(n-1) mod n = 1.
2053232229649 is prime.
b^((n-1)/2053232229649)-1 mod n = 49165362979375159, which is a unit, inverse 29864252705421883.
(2053232229649) divides n-1.
(2053232229649)^2 > n.
n is prime by Pocklington's theorem.