Primality proof for n = 11198022081713:
Take b = 2.
b^(n-1) mod n = 1.
16183 is prime.
b^((n-1)/16183)-1 mod n = 8623673830514, which is a unit, inverse 7904725718434.
641 is prime.
b^((n-1)/641)-1 mod n = 426767406451, which is a unit, inverse 1055198904181.
(641 * 16183) divides n-1.
(641 * 16183)^2 > n.
n is prime by Pocklington's theorem.