Primality proof for n = 112356767778179104648003230782815205059434761578340093581:
Take b = 2.
b^(n-1) mod n = 1.
3972738854007370570932605213 is prime.
b^((n-1)/3972738854007370570932605213)-1 mod n = 8192058783334959717162708433724760300699615601152932033, which is a unit, inverse 65592084563789812004372243665998789141424697330061387902.
79806171026243 is prime.
b^((n-1)/79806171026243)-1 mod n = 33369870785898180272158746867042973148560827706927770186, which is a unit, inverse 96850531240110869634880055830962796551673599868896140725.
(79806171026243 * 3972738854007370570932605213) divides n-1.
(79806171026243 * 3972738854007370570932605213)^2 > n.
n is prime by Pocklington's theorem.