Primality proof for n = 1124679999981664229965379347:
Take b = 2.
b^(n-1) mod n = 1.
120699720968197491947347 is prime.
b^((n-1)/120699720968197491947347)-1 mod n = 93254600903495182926214870, which is a unit, inverse 347476269574020410314155839.
(120699720968197491947347) divides n-1.
(120699720968197491947347)^2 > n.
n is prime by Pocklington's theorem.