Primality proof for n = 1137346319589436823:
Take b = 2.
b^(n-1) mod n = 1.
5842037431 is prime.
b^((n-1)/5842037431)-1 mod n = 43895638642786331, which is a unit, inverse 296884222298623773.
(5842037431) divides n-1.
(5842037431)^2 > n.
n is prime by Pocklington's theorem.