Primality proof for n = 1139592334882447158893:
Take b = 2.
b^(n-1) mod n = 1.
25659209 is prime.
b^((n-1)/25659209)-1 mod n = 659196016859333662713, which is a unit, inverse 345944043448509738469.
858397 is prime.
b^((n-1)/858397)-1 mod n = 2765759162330038443, which is a unit, inverse 667526724564799460751.
(858397 * 25659209) divides n-1.
(858397 * 25659209)^2 > n.
n is prime by Pocklington's theorem.