Primality proof for n = 115263316429:
Take b = 2.
b^(n-1) mod n = 1.
43462789 is prime. b^((n-1)/43462789)-1 mod n = 94235078530, which is a unit, inverse 39838661826.
(43462789) divides n-1.
(43462789)^2 > n.
n is prime by Pocklington's theorem.