Primality proof for n = 115347420731:
Take b = 2.
b^(n-1) mod n = 1.
11534742073 is prime.
b^((n-1)/11534742073)-1 mod n = 1023, which is a unit, inverse 95164440955.
(11534742073) divides n-1.
(11534742073)^2 > n.
n is prime by Pocklington's theorem.