Primality proof for n = 115792089210356248762697446949407573530086143415290314195533631308867097853951:
Take b = 2.
b^(n-1) mod n = 1.
835945042244614951780389953367877943453916927241 is prime.
b^((n-1)/835945042244614951780389953367877943453916927241)-1 mod n = 49835480456766173544607506164699712169824023691580347094409044481755491731277, which is a unit, inverse 35893950584104763925847036954507472337811148100266109799856099637894785463246.
(835945042244614951780389953367877943453916927241) divides n-1.
(835945042244614951780389953367877943453916927241)^2 > n.
n is prime by Pocklington's theorem.