Primality proof for n = 115792089237316195423570985008687907852837564279074904382605163141518161494337:
Take b = 2.
b^(n-1) mod n = 1.
341948486974166000522343609283189 is prime.
b^((n-1)/341948486974166000522343609283189)-1 mod n = 86644313145397489891193855759928671818841495415153161568930588450251036589537, which is a unit, inverse 57112704531168816596589732607440886458891436705097388389849158079043094771009.
174723607534414371449 is prime.
b^((n-1)/174723607534414371449)-1 mod n = 58138579787377535003503259606714116115479494849592057519620557805018937774447, which is a unit, inverse 82825258999207434266669200773575514537865192807825383256844795767869923999078.
(174723607534414371449 * 341948486974166000522343609283189) divides n-1.
(174723607534414371449 * 341948486974166000522343609283189)^2 > n.
n is prime by Pocklington's theorem.