Primality proof for n = 115792089237316195423570985008687907853269984665640564039457584007908834671663:
Take b = 2.
b^(n-1) mod n = 1.
205115282021455665897114700593932402728804164701536103180137503955397371 is prime.
b^((n-1)/205115282021455665897114700593932402728804164701536103180137503955397371)-1 mod n = 30133174243114333125352536507925183895021889065932097717961225114769139489295, which is a unit, inverse 38738227534097492269493948901333532538630784921480042032654553727346127695815.
(205115282021455665897114700593932402728804164701536103180137503955397371) divides n-1.
(205115282021455665897114700593932402728804164701536103180137503955397371)^2 > n.
n is prime by Pocklington's theorem.