Primality proof for n = 11602451687:
Take b = 2.
b^(n-1) mod n = 1.
7759 is prime.
b^((n-1)/7759)-1 mod n = 3051258078, which is a unit, inverse 5208373111.
103 is prime.
b^((n-1)/103)-1 mod n = 6562387615, which is a unit, inverse 10778096296.
(103 * 7759) divides n-1.
(103 * 7759)^2 > n.
n is prime by Pocklington's theorem.