Primality proof for n = 1168118569486389440308203361557649499676771110259307362471795835525621803683357571467152044105461:
Take b = 2.
b^(n-1) mod n = 1.
60591682859247895515955060045153912202093072202746374731848221245220210313 is prime.
b^((n-1)/60591682859247895515955060045153912202093072202746374731848221245220210313)-1 mod n = 801150924202651115883786854225338772676216435859492283792239904636581214990030968591011330308162, which is a unit, inverse 803036673604245303404795454769369067195534349711551298520565847471434864794705394174077567743731.
(60591682859247895515955060045153912202093072202746374731848221245220210313) divides n-1.
(60591682859247895515955060045153912202093072202746374731848221245220210313)^2 > n.
n is prime by Pocklington's theorem.