Primality proof for n = 12165835774676813:
Take b = 2.
b^(n-1) mod n = 1.
3041458943669203 is prime.
b^((n-1)/3041458943669203)-1 mod n = 15, which is a unit, inverse 10543724338053238.
(3041458943669203) divides n-1.
(3041458943669203)^2 > n.
n is prime by Pocklington's theorem.