Primality proof for n = 123513195593586463868249598285337146648031981:
Take b = 2.
b^(n-1) mod n = 1.
228728139988123081237499256083957678977837 is prime.
b^((n-1)/228728139988123081237499256083957678977837)-1 mod n = 1103172934848616636652505964478463, which is a unit, inverse 84763288238007865858787554759470743163010794.
(228728139988123081237499256083957678977837) divides n-1.
(228728139988123081237499256083957678977837)^2 > n.
n is prime by Pocklington's theorem.