Primality proof for n = 1255525949:
Take b = 2.
b^(n-1) mod n = 1.
116989 is prime. b^((n-1)/116989)-1 mod n = 806674565, which is a unit, inverse 744224629.
(116989) divides n-1.
(116989)^2 > n.
n is prime by Pocklington's theorem.