Primality proof for n = 1257559732178653:
Take b = 2.
b^(n-1) mod n = 1.
1224481 is prime.
b^((n-1)/1224481)-1 mod n = 1252739704402214, which is a unit, inverse 790900187493841.
531581 is prime.
b^((n-1)/531581)-1 mod n = 1139842034583223, which is a unit, inverse 212927577457398.
(531581 * 1224481) divides n-1.
(531581 * 1224481)^2 > n.
n is prime by Pocklington's theorem.