Primality proof for n = 12779357438669681:
Take b = 2.
b^(n-1) mod n = 1.
324689 is prime.
b^((n-1)/324689)-1 mod n = 4006238619156740, which is a unit, inverse 1987457366776900.
15823 is prime.
b^((n-1)/15823)-1 mod n = 7013642631440734, which is a unit, inverse 1534361525383712.
(15823 * 324689) divides n-1.
(15823 * 324689)^2 > n.
n is prime by Pocklington's theorem.