Primality proof for n = 1288020826060799995852297:
Take b = 2.
b^(n-1) mod n = 1.
7287076501559 is prime.
b^((n-1)/7287076501559)-1 mod n = 281293511429496321393439, which is a unit, inverse 1178956362294658287925885.
(7287076501559) divides n-1.
(7287076501559)^2 > n.
n is prime by Pocklington's theorem.