Primality proof for n = 1293654617:
Take b = 2.
b^(n-1) mod n = 1.
63589 is prime. b^((n-1)/63589)-1 mod n = 205021467, which is a unit, inverse 495472994.
(63589) divides n-1.
(63589)^2 > n.
n is prime by Pocklington's theorem.