Primality proof for n = 131342845410725759:
Take b = 2.
b^(n-1) mod n = 1.
13904599344773 is prime.
b^((n-1)/13904599344773)-1 mod n = 48925684169174187, which is a unit, inverse 1632403882809336.
(13904599344773) divides n-1.
(13904599344773)^2 > n.
n is prime by Pocklington's theorem.