Primality proof for n = 132514945648719450732625795951913634887948272656733637982269:
Take b = 2.
b^(n-1) mod n = 1.
2493961260309239103759479389479268332988451545120507 is prime.
b^((n-1)/2493961260309239103759479389479268332988451545120507)-1 mod n = 10513403688419286369012012655115015376778961726164140372163, which is a unit, inverse 9832719781695390180727652607789631769203154249540891116095.
(2493961260309239103759479389479268332988451545120507) divides n-1.
(2493961260309239103759479389479268332988451545120507)^2 > n.
n is prime by Pocklington's theorem.