Primality proof for n = 132896956044521568488119:
Take b = 2.
b^(n-1) mod n = 1.
22149492674086928081353 is prime.
b^((n-1)/22149492674086928081353)-1 mod n = 63, which is a unit, inverse 105473774638509181339777.
(22149492674086928081353) divides n-1.
(22149492674086928081353)^2 > n.
n is prime by Pocklington's theorem.