Primality proof for n = 13374631042347059581:
Take b = 2.
b^(n-1) mod n = 1.
50711861 is prime.
b^((n-1)/50711861)-1 mod n = 4627580390468896301, which is a unit, inverse 4144201685379093368.
56783 is prime.
b^((n-1)/56783)-1 mod n = 11606040753584551413, which is a unit, inverse 11462222911130846259.
(56783 * 50711861) divides n-1.
(56783 * 50711861)^2 > n.
n is prime by Pocklington's theorem.