Primality proof for n = 134384519429:
Take b = 2.
b^(n-1) mod n = 1.
40043063 is prime. b^((n-1)/40043063)-1 mod n = 106324638340, which is a unit, inverse 83733766020.
(40043063) divides n-1.
(40043063)^2 > n.
n is prime by Pocklington's theorem.