Primality proof for n = 135382853293:
Take b = 2.
b^(n-1) mod n = 1.
275168401 is prime.
b^((n-1)/275168401)-1 mod n = 83541084863, which is a unit, inverse 117645950070.
(275168401) divides n-1.
(275168401)^2 > n.
n is prime by Pocklington's theorem.