Primality proof for n = 1357291859799823621:
Take b = 2.
b^(n-1) mod n = 1.
53448597593 is prime.
b^((n-1)/53448597593)-1 mod n = 1090557220182166209, which is a unit, inverse 372535664642155041.
(53448597593) divides n-1.
(53448597593)^2 > n.
n is prime by Pocklington's theorem.