Primality proof for n = 136401162692544977256234449:
Take b = 2.
b^(n-1) mod n = 1.
432621809776543 is prime.
b^((n-1)/432621809776543)-1 mod n = 74682394745479600194196356, which is a unit, inverse 57154127414484158576128025.
(432621809776543) divides n-1.
(432621809776543)^2 > n.
n is prime by Pocklington's theorem.