Primality proof for n = 13823233105879:
Take b = 2.
b^(n-1) mod n = 1.
3499799 is prime.
b^((n-1)/3499799)-1 mod n = 8394433416340, which is a unit, inverse 6370809299365.
43 is prime.
b^((n-1)/43)-1 mod n = 12948309279233, which is a unit, inverse 2156286549676.
(43 * 3499799) divides n-1.
(43 * 3499799)^2 > n.
n is prime by Pocklington's theorem.