Primality proof for n = 138897064261279495097010689063:
Take b = 2.
b^(n-1) mod n = 1.
715138273065985889 is prime.
b^((n-1)/715138273065985889)-1 mod n = 37801534783513065116868835228, which is a unit, inverse 102545188581036136749863526784.
(715138273065985889) divides n-1.
(715138273065985889)^2 > n.
n is prime by Pocklington's theorem.