Primality proof for n = 13904599344773:
Take b = 2.
b^(n-1) mod n = 1.
4133 is prime.
b^((n-1)/4133)-1 mod n = 7006581642250, which is a unit, inverse 1536151737491.
311 is prime.
b^((n-1)/311)-1 mod n = 10323882929645, which is a unit, inverse 5031274480226.
257 is prime.
b^((n-1)/257)-1 mod n = 386755202860, which is a unit, inverse 64520513421.
(257 * 311 * 4133) divides n-1.
(257 * 311 * 4133)^2 > n.
n is prime by Pocklington's theorem.