Primality proof for n = 139862065649:
Take b = 2.
b^(n-1) mod n = 1.
380059961 is prime.
b^((n-1)/380059961)-1 mod n = 47456737026, which is a unit, inverse 56245882722.
(380059961) divides n-1.
(380059961)^2 > n.
n is prime by Pocklington's theorem.