Primality proof for n = 140731847223860698993672433903061203299016858671554230293:
Take b = 2.
b^(n-1) mod n = 1.
21561596637519154364530566979 is prime.
b^((n-1)/21561596637519154364530566979)-1 mod n = 93838646185460646404182154013221873569480931329864712019, which is a unit, inverse 89185208156111169819064954848987757484831368627523891035.
(21561596637519154364530566979) divides n-1.
(21561596637519154364530566979)^2 > n.
n is prime by Pocklington's theorem.