Primality proof for n = 141700345513649190797:
Take b = 2.
b^(n-1) mod n = 1.
49645261 is prime.
b^((n-1)/49645261)-1 mod n = 68637403196926561836, which is a unit, inverse 49270303936658816112.
9535423 is prime.
b^((n-1)/9535423)-1 mod n = 53425856062283740560, which is a unit, inverse 83653541202313293261.
(9535423 * 49645261) divides n-1.
(9535423 * 49645261)^2 > n.
n is prime by Pocklington's theorem.