Primality proof for n = 1424961889141606181:
Take b = 2.
b^(n-1) mod n = 1.
7959649 is prime.
b^((n-1)/7959649)-1 mod n = 1342969993534657940, which is a unit, inverse 340802350814694891.
58481 is prime.
b^((n-1)/58481)-1 mod n = 1057125979828876387, which is a unit, inverse 813073097731928778.
(58481 * 7959649) divides n-1.
(58481 * 7959649)^2 > n.
n is prime by Pocklington's theorem.