Primality proof for n = 1428624589419343516204097:
Take b = 2.
b^(n-1) mod n = 1.
13374631042347059581 is prime.
b^((n-1)/13374631042347059581)-1 mod n = 191867956472078795970091, which is a unit, inverse 193185674872353397584457.
(13374631042347059581) divides n-1.
(13374631042347059581)^2 > n.
n is prime by Pocklington's theorem.