Primality proof for n = 14334859726775219:
Take b = 2.
b^(n-1) mod n = 1.
159793 is prime.
b^((n-1)/159793)-1 mod n = 9287525273032969, which is a unit, inverse 4642206447786117.
1069 is prime.
b^((n-1)/1069)-1 mod n = 12988821837051968, which is a unit, inverse 9815674160228739.
(1069 * 159793) divides n-1.
(1069 * 159793)^2 > n.
n is prime by Pocklington's theorem.