Primality proof for n = 143868846306805039381043:
Take b = 2.
b^(n-1) mod n = 1.
41293497469967 is prime.
b^((n-1)/41293497469967)-1 mod n = 124514147462345167365638, which is a unit, inverse 87480904532680783219968.
(41293497469967) divides n-1.
(41293497469967)^2 > n.
n is prime by Pocklington's theorem.